Best-Practice DFT Protocols

I enjoyed this paper from the Grimme group:

Best-Practice DFT Protocols for Basic Molecular Computational Chemistry, Angew. Chem. Int. Ed., 2022, 61, e202205735.

The authors discuss the best modern methods for running a DFT computations – a guide through the jungle. For me the main conclusions regarding functionals are:

  • The composite method r2SCAN-3c offers great cost-benefit a ratio and we are starting to adopt it as a default method for ground-state optimisations.
    (This should be taken with a grain of salt, since it is the authors’ own method, but the arguments are sound.)
  • If you want to go beyond r2SCAN-3c, you have to try really really hard, as in range-separated hybrid meta-GGA with a triple/quadruple-zeta basis set. There is not really any reason to ever use double-zeta basis sets – better use a compound method.
  • B3LYP/6-31G* is outdated.

PhD position

A new funded PhD position is available in the group: Computational design of functional molecular materials.

This is a flexible position allowing you to apply state-of-the-art quantum chemistry along with sophisticated analysis methods. The goal is to develop new rules for designing functional materials going beyond the frontier orbital picture. The work will apply rules developed in PCCP, 22, 6058-6080 (2020) in connection with experimental partners.

This is a flexible studentship that can be adjusted to your needs and interests. Please apply by February 2023 if this interests you.

Non-Kasha fluorescence

Kasha’s rule states that fluorescence generally occurs from the lowest excited singlet state (S1). Exceptions to this rule are usually associated with a metastable S2 state that is separated from S1 not allowing for interconversion. In a recent article we outlined a different mechanism for non-Kasha fluorescence: If S1 and S2 are very close in energy, then S2 is populated in a dynamic equilibrium following Boltzmann statistics. This effect is particularly pronounced if there is a large amount of vibrational excess energy following excitation into a high-energy absorption peak. The full story, “Non-Kasha fluorescence of pyrene emerges from a dynamic equilibrium between excited states” was just published in J. Chem. Phys.

Eu(III) complexes

Our new paper “Impact of Varying the Phenylboronic Acid Position in Macrocyclic Eu(III) Complexes on the Recognition of Adenosine Monophosphate“, led by S. E. Bodman and S. J. Butler from Loughborough, just appeared in Organic Chemistry Frontiers. The paper is the second in a series studying the anion sensing properties of Eu(III) complexes with phenylboronic acids.

Aside from reporting the synthesis and anion binding, the paper presents new strategies for the computational analysis of such complexes. Aside from modelling the geometries by density functional theory, high-level multireference methods in OpenMolcas were applied to study the luminescence properties. These first principles computations offer a promising approach to access the emission spectra of lanthanide complexes, aiding the design of responsive lanthanide probes with specific photophysical properties

Release of TheoDORE 3.0

Version 3.0 of the TheoDORE wavefunction analysis package is available. Download the current version below.

New features of TheoDORE 3.0

  • New user interface and documentation
  • Improvement for VIST (plot_vist)
  • Improvements for natural orbital analysis (analyze_nos) including unrestricted orbitals
  • LOC for ionic states (analyze_tden)
  • Jmol densities (jmol_mos)
  • State-to-state TDM
  • Updated ADF interface
  • ONETEP interface
  • Excitation number, modified from [DOI: (10.1021/acs.jctc.7b00963)]

Note: TheoDORE 3 has a modified user interface. To use TheoDORE call

theodore theoinp

theodore analyze_tden

theodore analyze_nos

etc.

TheoDORE – Download

Download the newest release of the TheoDORE wavefunction analysis program – TheoDORE 3.2 (22 July 2024)

Size: 12 MB
Version: 3.2

Full release notes

Continue reading