Research

Research Themes

Functional Molecules and Organic Electronics

One major research theme in the group is concerned with functional molecules interacting with light and, specifically, organic electronics. We are and have been involved in a range of projects studying a wide variety of molecular structures:
  • (anti)aromatic macrocycles [74,76,85,90,95,101] to be used as photoredox catalysts, see EPSRC grant EP/V048686/1,
  • OLED applications [12,37] including hyperfluorescence [102], delayed fluorescence [57,71,81], and diradicals [103,105],
  • singlet fission chromophores: BN doped tetracenes [65] and Pechmann Dyes [104],
  • lanthanide complexes used as sensors [83,88,94],
  • push-pull systems: solvatochromic effects [40], two-photon absorption [49,58], and symmetry breaking [77],
  • PPV (p-phenylene vinylene) oligomers [11,27] and other other conjugated polymers [26,38] with applications in photovoltaics,
  • open-shell character [10,16,30,39] and (anti)aromaticity [75] in graphene nanoribbons of various types,
  • transition metal complexes [22,46,66] and di-nuclear transition metal complexes [63],
  • fingerprinting reagents [73],
  • excited-state intramolecular proton transfer [1,2,5] and its association to excited-state aromaticity [107].
It is our particular goal to obtain deeper insight into the electronic excited-state wavefunctions involved. Research interests revolve around
  • general classification and analysis of excited states [93,100,103],
  • tuning of excited-state energies beyond the molecular orbital picture to tune relative energies of various types of states [62,96],
  • diagnosing and correcting problems in computational methods [98].

Photophysics and spectroscopy

Work on basic photophysics and support of colleagues working in spectroscopy or analytical science.
  • Development of a versatile and user-friendly toolbox for categorising excited-state wavefunctions [6,17,61,82],
  • computational analysis of excitation energies beyond the MO picture [62,71],
  • analysis of double excitations [86],
  • dynamics simulations of electronic energy transfer in a molecular dyad [36,51] and the benzene dimer [53],
  • 2D UV/Vis spectroscopy for molecular excitons [69],
  • non-Kasha behaviour of pyrene [87],
  • ion-laser-interaction mass spectrometry [72].

Reaction mechanisms

Work in the group is also concerned with supporting colleagues working in chemical synthesis and elucidating reaction mechanisms.
  • Photoredox-catalysed reactions [68],
  • interpretation of IR spectra [67],
  • reactions mediated by a plasma [78],
  • enantioselective transition metal catalysis.[99]

Excited states of interacting nucleobases

Prior work is concerned with the photophysics and charge transfer properties of DNA and how they are affected by stacking and base pairing. For reviews of computations on these systems, consider Refs [21,33]. We have performed detailed work on the UV absorbing states in single [41] and double-stranded DNA [7], showing that nearest-neighbour interactions between nucleobases play a role but that electronic delocalization does not exceed two or three nucleobases. These results were based on a new analysis strategy for the one-electron transition density matrix [6]. Furthermore, exciplex formation in the adenine dinucleotide was examined [9]. An initial project was concerned with charge transfer in stacked π-systems. The ethylene dimer radical cation with a bridge of up to three formaldehyde molecules proved to be an excellent model system to examine the basic physics of charge transfer [3]. Based on this experience a more extended study of energy transfer and proton-coupled electron transfer in the 2-pyridone dimer radical cation was performed [8].

Code Development

TheoDORE

The TheoDORE (Theoretical Density, Orbital Relaxation, and Exciton) analysis package is a diverse and flexible wavefunction analysis suite developed and maintained by F. Plasser [61]. Aside from different population analysis methods and the natural transition orbital decomposition, special features of TheoDORE are concerned with
  • electron-hole correlation plots [6] and conditional electron densities [55] to visualize static correlation in the excited state ,
  • natural difference orbitals showing orbital relaxation [18,17],
  • computation of an approximate exciton size [20,27],
  • an entanglement analysis [31],
  • the analysis of unpaired electrons [10],
  • analysis tools for transition metal complexes [22,46],
  • visualisation of chemical shielding tensors (VIST) [74].
Download the current version of TheoDORE and the tutorial below:

libwfa

The wavefunction analysis library libwfa is a parallel development to TheoDORE, allowing to do wavefunction analysis in an integrated fashion [82]. The main enhancements as compared to TheoDORE are
  • multipole analysis of exciton wavefunctions to allow the computation of exciton sizes in real space and correlation coefficients [20,24],
  • an entanglement analysis [31],
  • decomposition of excited-state energies in terms of electrostatic potentials [62],
  • enhanced plotting capabilities.
Currently, libwfa is interfaced to the Q-Chem and OpenMolcas program packages. Feel free to contact me or another developer if you are interested in interfacing libwfa to your own code.

Columbus

COLUMBUS is an ab-initio electronic structure package, focused on multi-reference methods [50,64,70]. My involvement includes
  • Spin-density computations [92]
  • Improving the efficiency of parallel MR-CI calculations with a special focus on non-adiabatic dynamics simulations.
  • Maintaining and expanding the interface to the MOLCAS code [28].
  • Controlling the work-flow in parallel MR-CI calculations to allow for user-friendly utilization of the newly devoloped program code. For applications see Refs [10,16,30].
  • Local MR-CI [39].
  • Enhancing the efficiency of the computation of gradients and non-adiabatic couplings at the state averaged multi-configuration self-consistent field method to allow for non-adiabatic dynamics simulations of systems of signficantly increased size. In particular the computation of the non Hellmann-Feynman terms has been sped up.
  • Interfacing of different modules to allow for an efficient calculation of spin-orbit coupling elements to be used for non-adiabatic dynamics simulations [19].
  • Providing an efficient and flexible way to interface to the various functionalities of COLUMBUS, in particular in connection with dynamics simulations and QM/MM hybrid treatment (through work on the runc execution script and the colinp interactive input facility). In particular I am working on some of the input tools to speed up user input without losing flexibility in the input options.
  • User registration and distribution of the COLUMBUS code.

MOLCAS/OpenMolcas

OpenMolcas is an ab-initio quantum chemistry package, which allows performing multiconfigurational computations across the periodic table [28,60,97]. My work is concerned with
  • Maintaining and expanding the interface to the COLUMBUS program package [28].
  • Implementation of new wavefunction analysis methods through the wavefunction analysis library libwfa [43].

Q-Chem

Q-CHEM is a comprehensive ab-initio quantum chemistry package with a wide range of electronic structure methods implemented [79]. My work is concerned with excited state analysis methods
  • Density matrix based analysis and visualization methods implemented for the ADC method [18,17] providing deeper insight into excited state structure including an analysis of the transition density matrix for the visualization of electron-hole correlations [24] and an attachment/detachment density analysis.
  • The same analysis for time-dependent density functional theory calculations with a focus on dynamic charge transfer effects [25].
  • Comparison of the ADC, EOM-CC, and TDDFT methods [47].
  • Work on the NMR code with applications for aromaticity descriptors.

Newton-X

NEWTON-X is a modular program system which performs non-adiabatic dynamics simulations in connection with different electronic structure programs.[13,91] My work includes
  • Implementation of local diabatization a stable way of integrating the time-dependent electronic Schrödinger equation [8].
  • ADC(2) non-adiabatic couplings and general maintenance of the wavefunction overlap code [15].
  • Normal mode analysis and Essential Dynamics to be able to follow and analyze molecular motions. For more details see my Diploma Thesis (Sec. 2.3.4), for applications consider Refs [1,8].
  • Interface to COLUMBUS 7.0.
  • Interface to DFTB+ [45].

SHARC

SHARC (Surface Hopping including Arbitrary Couplings) is a software suite used for the simulation of non-adiabatic molecular dynamics. Aside from standard photodynamics, it allows for the simulation of intersystem crossing and explicit interactions with a radiation field. My work is concerned with
  • The efficient computation of wavefunction overlaps as needed for non-adiabatic dynamics simulations [29] (Download from github). Application of the same code for wavefunction comparisons [32] and parameterization of vibronic coupling models [48].
  • Surface hopping with correlated single-reference methods [44].
  • Highly efficient surface hopping dynamics using vibronic coupling models [52,80].
  • Surface hopping dynamics within an exciton model [51].
  • Decoherence corrections and momentum rescaling [59].

Publications

— 2024 —

[107] D. Xing, F. Glöcklhofer, F. Plasser: “Proton transfer induced excited-state aromaticity gain for chromophores with maximal Stokes shifts”. Chem. Sci. (2024).
[106] K. Vu, J. Pandian, B. Zhang, C. Annas, A. J. Parker, J. S. Mancini, E. B. Wang, D. Saldana-Greco, E. S. Nelson, G. Springsted, H. Lischka, F. Plasser, C. A. Parish: “Multireference Averaged Quadratic Coupled Cluster (MR-AQCC) Study of the Geometries and Energies for ortho -, meta – and para -Benzyne”. J. Phys. Chem. A, 128, 7816-7829 (2024).
[105] C. P. Yu, R. Chowdhury, Y. Fu, P. Ghosh, W. Zeng, T. B. E. Mustafa, J. Grüne, L. E. Walker, D. G. Congrave, X. W. Chua, P. Murto, A. Rao, H. Sirringhaus, F. Plasser, C. P. Grey, R. H. Friend, H. Bronstein: “Near-infrared luminescent open-shell π-conjugated systems with a bright lowest-energy zwitterionic singlet excited state”. Science Advances, 10 (2024).
[104] A. V. Girija, W. Zeng, W. K. Myers, R. C. Kilbride, D. T. W. Toolan, C. Zhong, F. Plasser, A. Rao, H. Bronstein: “Singlet Fission in Pechmann Dyes: Planar Chromophore Design and Understanding”. JACS, 146, 18 253-18 261 (2024).
[103] L. Matasovic, H. Bronstein, R. H. Friend, F. Plasser: “Classification and quantitative characterisation of the excited states of π-conjugated diradicals”. Faraday Discussions (2024).
[102] H.-H. Cho, D. G. Congrave, A. J. Gillett, S. Montanaro, H. E. Francis, V. Riesgo-Gonzalez, J. Ye, R. Chowdury, W. Zeng, M. K. Etherington, J. Royakkers, O. Millington, A. D. Bond, F. Plasser, J. M. Frost, C. P. Grey, A. Rao, R. H. Friend, N. C. Greenham, H. Bronstein: “Suppression of Dexter transfer by covalent encapsulation for efficient matrix-free narrowband deep blue hyperfluorescent OLEDs”. Nature Materials, 23, 519-526 (2024).
[101] B. Ding, M. Bhosale, T. L. R. Bennett, M. Heeney, F. Plasser, B. Esser, F. Glöcklhofer: “Reducing undesired solubility of squarephaneic tetraimide for use as an organic battery electrode material”. Faraday Discussions, 250, 129-144 (2024).
[100] P. Kimber, F. Plasser: “Classification and Analysis of Molecular Excited States”. in Comprehensive Computational Chemistry, vol. 4, 55-83 (2024).
[99] Y. Fukazawa, V. Y. Vaganov, J. V. Burykina, A. N. Fakhrutdinov, R. I. Safiullin, F. Plasser, A. E. Rubtsov, V. P. Ananikov, A. V. Malkov: “Mechanistic Insight into Palladium‐Catalyzed Asymmetric Alkylation of Indoles with Diazoesters Employing Bipyridine‐ N , N’ ‐dioxides as Chiral Controllers”. Advanced Synthesis Catalysis, 366, 121-133 (2024).

— 2023 —

[98] S. A. do Monte, R. F. K. Spada, R. L. R. Alves, L. Belcher, R. Shepard, H. Lischka, F. Plasser: “Quantification of the Ionic Character of Multiconfigurational Wave Functions: The QTa Diagnostic”. J. Phys. Chem. A, 127, 9842-9852 (2023).
[97] G. Li Manni, et al.: “The OpenMolcas Web : A Community-Driven Approach to Advancing Computational Chemistry”. J. Chem. Theory Comput., 19, 6933-6991 (2023).
[96] P. Kimber, F. Plasser: “Energy Component Analysis for Electronically Excited States of Molecules: Why the Lowest Excited State Is Not Always the HOMO/LUMO Transition”. J. Chem. Theory Comput., 19, 2340-2352 (2023).
[95] T. L. R. Bennett, A. V. Marsh, J. M. Turner, F. Plasser, M. Heeney, F. Glöcklhofer: “Functionalisation of conjugated macrocycles with type I and II concealed antiaromaticity via cross-coupling reactions”. MSDE, 8, 713-720 (2023).
[94] M. L. Shipton, F. A. Jamion, S. Wheeler, A. M. Riley, F. Plasser, B. V. L. Potter, S. J. Butler: “Expedient synthesis and luminescence sensing of the inositol pyrophosphate cellular messenger 5-PP-InsP 5”. Chem. Sci., 14, 4979-4985 (2023).
[93] M. T. do Casal, J. M. Toldo, M. Barbatti, F. Plasser: “Classification of doubly excited molecular electronic states”. Chem. Sci., 14, 4012-4026 (2023).
[92] R. F. K. Spada, M. P. Franco, R. Nieman, A. J. A. Aquino, R. Shepard, F. Plasser, H. Lischka: “Spin-density calculation via the graphical unitary group approach”. Mol. Phys., 121, e2091 049 (2023).

— 2022 —

[91] M. Barbatti, M. Bondanza, R. Crespo-Otero, B. Demoulin, P. O. Dral, G. Granucci, F. Kossoski, H. Lischka, B. Mennucci, S. Mukherjee, M. Pederzoli, M. Persico, M. Pinheiro Jr, J. Pittner, F. Plasser, E. Sangiogo Gil, L. Stojanovic: “Newton-X Platform: New Software Developments for Surface Hopping and Nuclear Ensembles”. J. Chem. Theory Comput., 18, 6851-6865 (2022).
[90] S. Eder, B. Ding, D. B. Thornton, D. Sammut, A. J. P. White, F. Plasser, I. E. L. Stephens, M. Heeney, S. Mezzavilla, F. Glöcklhofer: “Squarephaneic Tetraanhydride: A Conjugated Square‐Shaped Cyclophane for the Synthesis of Porous Organic Materials”. Angew. Chemie Int. Ed., 61, e202212 623 (2022).
[89] C. A. Halliwell, S. E. Dann, J. Ferrando‐Soria, F. Plasser, K. Yendall, E. V. Ramos‐Fernandez, G. T. Vladisavljević, M. R. J. Elsegood, A. Fernandez: “Hierarchical Assembly of a Micro‐ and Macroporous Hydrogen‐Bonded Organic Framework with Tailored Single‐Crystal Size”. Angew. Chemie Int. Ed., 61, e202208 677 (2022).
[88] S. E. Bodman, C. Breen, F. Plasser, S. J. Butler: “Impact of varying the phenylboronic acid position in macrocyclic Eu(iii) complexes on the recognition of adenosine monophosphate”. Org. Chem. Front., 9, 5494-5504 (2022).
[87] G. Braun, I. Borges, A. J. A. Aquino, H. Lischka, F. Plasser, S. A. do Monte, E. Ventura, S. Mukherjee, M. Barbatti: “Non-Kasha fluorescence of pyrene emerges from a dynamic equilibrium between excited states”. J. Chem. Phys., 157, 154 305 (2022).
[86] M. T. do Casal, J. M. Toldo, F. Plasser, M. Barbatti: “Using diketopyrrolopyrroles to stabilize double excitation and control internal conversion”. PCCP, 24, 23 279-23 288 (2022).
[85] M. Pletzer, F. Plasser, M. Rimmele, M. Heeney, F. Glöcklhofer: “[2.2.2.2]Paracyclophanetetraenes (PCTs): cyclic structural analogues of poly(p‑phenylene vinylene)s (PPVs)”. Open Research Europe, 1, 111 (2022).
[84] S. J. Coles, P. N. Horton, P. Kimber, W. T. Klooster, P. Liu, F. Plasser, M. B. Smith, G. J. Tizzard: “Reversible P–P bond cleavage at an iridium (iii) metal centre”. Chem. Commun., 58, 5598-5601 (2022).
[83] S. E. Bodman, C. Breen, S. Kirkland, S. Wheeler, E. Robertson, F. Plasser, S. J. Butler: “Sterically demanding macrocyclic Eu(iii) complexes for selective recognition of phosphate and real-time monitoring of enzymatically generated adenosine monophosphate”. Chem. Sci., 13, 3386-3394 (2022).
[82] F. Plasser, A. I. Krylov, A. Dreuw: “libwfa: Wavefunction analysis tools for excited and open‐shell electronic states”. WIREs Comput. Mol. Sci., 1-15 (2022).

— 2021 —

[81] P. Kimber, P. Goddard, I. A. Wright, F. Plasser: “The role of excited-state character, structural relaxation, and symmetry breaking in enabling delayed fluorescence activity in push–pull chromophores”. Phys. Chem. Chem. Phys., 23, 26 135-26 150 (2021).
[80] J. P. Zobel, M. Heindl, F. Plasser, S. Mai, L. González: “Surface Hopping Dynamics on Vibronic Coupling Models”. Acc. Chem. Res., 54, 3760-3771 (2021).
[79] E. Epifanovsky, et al.: “Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package”. J. Chem. Phys., 155, 084 801 (2021).
[78] H. Xu, M. Shaban, S. Wang, A. Alkayal, D. Liu, M. G. Kong, F. Plasser, B. R. Buckley, F. Iza: “Oxygen harvesting from carbon dioxide: simultaneous epoxidation and CO formation”. Chem. Sci., 12, 13 373-13 378 (2021).
[77] Z. Szakács, F. Glöcklhofer, F. Plasser, E. Vauthey: “Excited-state symmetry breaking in 9,10-dicyanoanthracene-based quadrupolar molecules: the effect of donor–acceptor branch length”. Phys. Chem. Chem. Phys., 23, 15 150-15 158 (2021).
[76] M. Rimmele, W. Nogala, M. Seif-Eddine, M. M. Roessler, M. Heeney, F. Plasser, F. Glöcklhofer: “Functional group introduction and aromatic unit variation in a set of π-conjugated macrocycles: revealing the central role of local and global aromaticity”. Org. Chem. Front., 8, 4730-4745 (2021).
[75] F. Plasser: “Exploitation of Baird Aromaticity and Clar’s Rule for Tuning the Triplet Energies of Polycyclic Aromatic Hydrocarbons”. Chemistry, 3, 532-549 (2021).
[74] F. Plasser, F. Glöcklhofer: “Visualisation of Chemical Shielding Tensors (VIST) to Elucidate Aromaticity and Antiaromaticity”. European J. Org. Chem., 2021, 2529-2539 (2021).
[73] L. M. Hunnisett, P. F. Kelly, S. Bleay, F. Plasser, R. King, B. McMurchie, P. Goddard: “Mechanistic insight into the fluorescence activity of forensic fingerprinting reagents”. J. Chem. Phys., 154, 124 313 (2021).
[72] J. Lachner, M. Martschini, A. Kalb, M. Kern, O. Marchhart, F. Plasser, A. Priller, P. Steier, A. Wieser, R. Golser: “Highly sensitive 26Al measurements by Ion-Laser-InterAction Mass Spectrometry”. Int. J. Mass Spectrom., 465, 116 576 (2021).
[71] Z. Pei, Q. Ou, Y. Mao, J. Yang, A. D. L. Lande, F. Plasser, W. Liang, Z. Shuai, Y. Shao: “Elucidating the Electronic Structure of a Delayed Fluorescence Emitter via Orbital Interactions, Excitation Energy Components, Charge-Transfer Numbers, and Vibrational Reorganization Energies”. J. Phys. Chem. Lett., 12, 2712-2720 (2021).

— 2020 —

[70] F. Plasser, H. Lischka: “Multi‐Reference Configuration Interaction”. In Quantum Chem. Dyn. Excit. States, 277-297, Wiley (2020).
[69] C. Heshmatpour, P. Malevich, F. Plasser, M. Menger, C. Lambert, F. Sanda, J. Hauer: “Annihilation Dynamics of Molecular Excitons Measured at a Single Perturbative Excitation Energy”. J. Phys. Chem. Lett., 11, 7776-7781 (2020).
[68] O. K. Koleoso, M. Turner, F. Plasser, M. C. Kimber: “A complementary approach to conjugated N -acyliminium formation through photoredox-catalyzed intermolecular radical addition to allenamides and allencarbamates”. Beilstein J. Org. Chem., 16, 1983-1990 (2020).
[67] J. C. Lowe, L. D. Wright, D. B. Eremin, J. V. Burykina, J. Martens, F. Plasser, V. P. Ananikov, J. W. Bowers, A. V. Malkov: “Solution processed CZTS solar cells using amine–thiol systems: understanding the dissolution process and device fabrication”. J. Mater. Chem. C, 8, 10 309-10 318 (2020).
[66] P. A. Sánchez-Murcia, J. J. Nogueira, F. Plasser, L. González: “Orbital-free photophysical descriptors to predict directional excitations in metal-based photosensitizers”. Chem. Sci., 331, 195-199 (2020).
[65] M. Pinheiro Jr, F. B. Machado, F. Plasser, A. Aquino, H. Lischka: “A systematic analysis of excitonic properties to seek optimal singlet fission: the BN-substitution patterns in tetracene”. J. Mater. Chem. C, 8, 7793-7804 (2020).
[64] H. Lischka, et al.: “The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry”. J. Chem. Phys., 152, 134 110 (2020).
[63] S. Rupp, F. Plasser, V. Krewald: “Multi-Tier Electronic Structure Analysis of Sita’s Mo and W Complexes Capable of Thermal or Photochemical N 2 Splitting”. Eur. J. Inorg. Chem., 2020, 1506-1518 (2020).
[62] P. Kimber, F. Plasser: “Toward an understanding of electronic excitation energies beyond the molecular orbital picture”. Phys. Chem. Chem. Phys., 22, 6058-6080 (2020).
[61] F. Plasser: “TheoDORE: A toolbox for a detailed and automated analysis of electronic excited state computations”. J. Chem. Phys., 152, 084 108 (2020).

— 2019 —

[60] I. Fernández Galván, et al.: “OpenMolcas: From source code to insight”. J. Chem. Theory Comput., 15, 5925-5964 (2019).
[59] F. Plasser, S. Mai, M. Fumanal, E. Gindensperger, C. Daniel, L. Gonzalez: “Strong Influence of Decoherence Corrections and Momentum Rescaling in Surface Hopping Dynamics of Transition Metal Complexes”. J. Chem. Theory Comput., 15, 5031-5045 (2019).
[58] F. Glöcklhofer, A. Rosspeintner, P. Pasitsuparoad, S. Eder, J. Fröhlich, G. Angulo, E. Vauthey, F. Plasser: “Effect of symmetric and asymmetric substitution on the optoelectronic properties of 9,10-dicyanoanthracene”. Mol. Syst. Des. Eng., 4, 951-961 (2019).
[57] S. Montanaro, A. J. Gillett, S. Feldmann, E. W. Evans, F. Plasser, R. H. Friend, I. A. Wright: “Red-Shifted Delayed Fluorescence at the Expense of Photoluminescence Quantum Efficiency – An Intramolecular Charge-Transfer Molecule Based on a Benzodithiophene-4,8-dione Acceptor”. PCCP, 21, 10 580-10 586 (2019).
[56] S. Mai, A. J. Atkins, F. Plasser, L. González: “The Influence of the Electronic Structure Method on Intersystem Crossing Dynamics. The Case of Thioformaldehyde”. J. Chem. Theory Comput., 15, 3470-3480 (2019).
55 F. Plasser: “Visualisation of Electronic Excited-State Correlation in Real Space”. ChemPhotoChem, 3, 702-706 (2019).
[54] S. Mai, F. Plasser, P. Marquetand, L. González: “General trajectory surface hopping method for ultrafast nonadiabatic dynamics”. In M. J. J. Vrakking, F. Lepine (editors), Attosecond Molecular Dynamics, Theoretical and Computational Chemistry Series, The Royal Society of Chemistry (2019).
53 T. M. Cardozo, A. P. Galliez, I. Borges, F. Plasser, A. J. Aquino, M. Barbatti, H. Lischka: “Dynamics of benzene excimer formation from the parallel-displaced dimer”. PCCP, 21, 13 916-13 924 (2019).
52 F. Plasser, S. Gómez, M. F. S. J. Menger, S. Mai, L. González: “Highly efficient surface hopping dynamics using a linear vibronic coupling model”. PCCP, 21, 57-59 (2019).

— 2018 —

[51] M. F. S. J. Menger, F. Plasser, B. Mennucci, L. González: “Surface hopping within an exciton picture – An electrostatic embedding scheme”. J. Chem. Theory Comput., 14, 6139-–6148 (2018).
[50] H. Lischka, D. Nachtigallová, A. J. A. Aquino, P. Szalay, F. Plasser, F. B. C. Machado, M. Barbatti: “Multireference Approaches for Excited States of Molecules”. Chem. Rev., 118, 7293-7361 (2018).
[49] M. Tromayer, P. Gruber, A. Rosspeintner, A. Ajami, W. Husinsky, F. Plasser, L. González, E. Vauthey, A. Ovsianikov, R. Liska: “Wavelength-optimized Two-Photon Polymerization Using Initiators Based on Multipolar Aminostyryl-1,3,5-triazines”. Sci. Rep., 8, 17 273 (2018).
[48] M. Fumanal, F. Plasser, S. Mai, C. Daniel, E. Gindensperger: “Interstate Vibronic Coupling Constants Between Electronic Excited States for Complex Molecules”. J. Chem. Phys., 148, 124 119 (2018).
[47] S. A. Mewes, F. Plasser, A. Krylov, A. Dreuw: “Benchmarking Excited-State Calculations Using Exciton Properties”. J. Chem. Theory Comput., 14, 710-725 (2018).
[46] S. Mai, F. Plasser, J. Dorn, M. Fumanal, C. Daniel, L. González: “Quantitative wave function analysis for excited states of transition metal complexes”. Coord. Chem. Rev., 361, 74-97 (2018).

— 2017 —

[45] L. Stojanović, S. Aziz, R. Hilal, F. Plasser, T. Niehaus, M. Barbatti: “Nonadiabatic Dynamics of Cycloparaphenylenes with TD-DFTB Surface Hopping”. J. Chem. Theory Comput., 13, 5846-5860 (2017).
[44] S. Mai, F. Plasser, M. Pabst, F. Neese, A. Köhn, L. González: “Surface hopping dynamics including intersystem crossing using the algebraic diagrammatic construction method”. J. Chem. Phys., 147, 184109 (2017).
[43] F. Plasser, S. Mewes, A. Dreuw, L. González: “Detailed Wave Function Analysis for Multireference Methods: Implementation in the Molcas Program Package and Applications to Tetracene”. J. Chem. Theory Comput., 13, 5343-5353 (2017).
[42] T. Rosenau, A. Potthast, N. Zwirchmayr, H. Hettegger, F. Plasser, T. Hosoya, M. Bacher, K. Krainz, T. Dietz: “Chromophores from hexeneuronic acids: identification of HexA-derived chromophores”. Cellulose, 24, 3671-3687 (2017).
[41] J. Nogueira, F. Plasser, L. González: “Electronic delocalization, charge transfer and hypochromism in the UV absorption spectrum of polyadenine unravelled by multiscale computations and quantitative wavefunction analysis”. Chem. Sci., 8, 5682-5691 (2017).
[40] P. Kautny, F. Glöcklhofer, T. Kader, J. Mewes, B. Stöger, J. Fröhlich, D. Lumpi, F. Plasser: “Charge-transfer states in triazole linked donor-acceptor materials: Strong effects of chemical modification and solvation”. PCCP, 19, 18 055-18 067 (2017).
[39] A. Das, T. Müller, F. Plasser, D. Krisiloff, E. Carter, H. Lischka: “Local Electron Correlation Treatment in Extended Multireference Calculations: Effect of Acceptor-Donor Substituents on the Biradical Character of the Polycyclic Aromatic Hydrocarbon Heptazethrene”. J. Chem. Theory Comput., 13, 2612-2622 (2017).
[38] S. Mewes, F. Plasser, A. Dreuw: “Universal Exciton Size in Organic Polymers is Determined by Nonlocal Orbital Exchange in Time-Dependent Density Functional Theory”. J. Phys. Chem. Lett., 8, 1205-1210 (2017).
[37] B. Holzer, J. Bintinger, D. Lumpi, C. Choi, Y. Kim, B. Stöger, C. Hametner, M. Marchetti-Deschmann, F. Plasser, E. Horkel, I. Kymissis, J. Fröhlich: “Color Fine-Tuning of Optical Materials Through Rational Design”. ChemPhysChem, 18, 549-563 (2017).
[36] C. Wiebeler, F. Plasser, G. Hedley, A. Ruseckas, I. Samuel, S. Schumacher: “Ultrafast Electronic Energy Transfer in an Orthogonal Molecular Dyad”. J. Phys. Chem. Lett., 8, 1086-1092 (2017).
[35] A. Luzanov, F. Plasser, A. Das, H. Lischka: “Evaluation of the quasi correlated tight-binding (QCTB) model for describing polyradical character in polycyclic hydrocarbons”. J. Chem. Phys., 146, 064106 (2017).
[34] S. Chopra, F. Plasser: “UV absorption in metal decorated boron nitride flakes: A theoretical analysis of excited states”. Mol. Phys., 115, 2469-2477 (2017).
[33] P. Marquetand, J. Nogueira, S. Mai, F. Plasser, L. González: “Challenges in simulating light-induced processes in DNA”. Molecules, 22, 49 (2017).

— 2016 —

[32] F. Plasser, L. González: “Communication: Unambiguous comparison of many-electron wavefunctions through their overlaps”. J. Chem. Phys., 145, 021103 (2016).
[31] F. Plasser: “Entanglement entropy of electronic excitations”. J. Chem. Phys., 144, 194107 (2016).
[30] A. Das, T. Müller, F. Plasser, H. Lischka: “Polyradical Character of Triangular Non-Kekulé Structures, Zethrenes, p-Quinodimethane-Linked Bisphenalenyl, and the Clar Goblet in Comparison: An Extended Multireference Study”. J. Phys. Chem. A, 120, 1625-1636 (2016).
[29] F. Plasser, M. Ruckenbauer, S. Mai, M. Oppel, P. Marquetand, L. González: “Efficient and Flexible Computation of Many-Electron Wave Function Overlaps”. J. Chem. Theory Comput., 12, 1207-1219 (2016).
[28] F. Aquilante, J. Autschbach, R. Carlson, L. Chibotaru, M. Delcey, L. De Vico, I. Fdez Galván, N. Ferré, L. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Marti, M. Stenrup, D. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. Vysotskiy, O. Weingart, F. Zapata, R. Lindh: “Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table”. J. Comp. Chem., 37, 506-541 (2016).
[27] S. Mewes, J. Mewes, A. Dreuw, F. Plasser: “Excitons in poly(para phenylene vinylene): a quantum-chemical perspective based on high-level ab initio calculations”. PCCP, 18, 2548-2563 (2016).

— 2015 —

[26] S. Kraner, R. Scholz, F. Plasser, C. Koerner, K. Leo: “Exciton size and binding energy limitations in one-dimensional organic materials”. J. Chem. Phys., 143, 244905 (2015).
[25] S. Mewes, F. Plasser, A. Dreuw: “Communication: Exciton analysis in time-dependent density functional theory: How functionals shape excited-state characters”. J. Chem. Phys., 143, 171101 (2015).
[24] F. Plasser, B. Thomitzni, S. Bäppler, J. Wenzel, D. Rehn, M. Wormit, A. Dreuw: “Statistical analysis of electronic excitation processes: Spatial location, compactness, charge transfer, and electron-hole correlation”. J. Comp. Chem., 36, 1609-1620 (2015).
[23] I. Georgieva, A. Aquino, F. Plasser, N. Trendafilova, A. Köhn, H. Lischka: “Intramolecular Charge-Transfer Excited-State Processes in 4-(N, N -Dimethylamino)benzonitrile: The Role of Twisting and the πσ* State”. J. Phys. Chem. A, 119, 6232-6243 (2015).
[22] F. Plasser, A. Dreuw: “High-level ab initio computations of the absorption spectra of organic iridium complexes”. J. Phys. Chem. A, 119, 1023-1036 (2015).
[21] F. Plasser, A. J. A. Aquino, H. Lischka, D. Nachtigallová: “Electronic Excitation Processes in Single-Strand and Double-Strand DNA: A Computational Approach”. In M. Barbatti, A. C. Borin, S. Ullrich (editors), Photoinduced Phenomena in Nucleic Acids II: DNA Fragments and Phenomenological Aspects, 1-37, Springer International Publishing, Cham (2015).

— 2014 —

[20] S. Bäppler, F. Plasser, M. Wormit, A. Dreuw: “Exciton analysis of many-body wave functions: Bridging the gap between the quasiparticle and molecular orbital pictures”. Phys. Rev. A, 90, 052521 (2014).
[19] S. Mai, T. Müller, F. Plasser, P. Marquetand, H. Lischka, L. González: “Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods”. J. Chem. Phys., 141, 074105 (2014).
[18] F. Plasser, S. Bäppler, M. Wormit, A. Dreuw: “New tools for the systematic analysis and visualization of electronic excitations. II. Applications”. J. Chem. Phys., 141, 024107 (2014).
[17] F. Plasser, M. Wormit, A. Dreuw: “New tools for the systematic analysis and visualization of electronic excitations. I. Formalism”. J. Chem. Phys., 141, 024106 (2014).
[16] S. Horn, F. Plasser, T. Müller, F. Libisch, J. Burgdörfer, H. Lischka: “A comparison of singlet and triplet states for one- and two-dimensional graphene nanoribbons using multireference theory”. Theor. Chem. Acc., 133, 1-9 (2014).
[15] F. Plasser, R. Crespo-Otero, M. Pederzoli, J. Pittner, H. Lischka, M. Barbatti: “Surface hopping dynamics with correlated single-reference methods: 9H-adenine as a case study”. J. Chem. Theory Comput., 10, 1395-1405 (2014).
[14] Z. Cui, H. Lischka, T. Mueller, F. Plasser, M. Kertesz: “Study of the diradicaloid character in a prototypical pancake-bonded dimer: The stacked tetracyanoethylene (TCNE) anion dimer and the neutral K2TCNE2 complex”. ChemPhysChem, 15, 165-175 (2014).
[13] M. Barbatti, M. Ruckenbauer, F. Plasser, J. Pittner, G. Granucci, M. Persico, H. Lischka: “Newton-X: A surface-hopping program for nonadiabatic molecular dynamics”. WIREs: Comp. Mol. Sci., 4, 26-33 (2014).

— 2013 —

[12] D. Lumpi, E. Horkel, F. Plasser, H. Lischka, J. Fröhlich: “Synthesis, spectroscopy, and computational analysis of photoluminescent bis(aminophenyl)-substituted thiophene derivatives”. ChemPhysChem, 14, 1016-1024 (2013).
[11] A. Panda, F. Plasser, A. Aquino, I. Burghardt, H. Lischka: “Electronically excited states in poly(p-phenylenevinylene): Vertical excitations and torsional potentials from high-level Ab initio calculations”. J. Phys. Chem. A, 117, 2181-2189 (2013).
[10] F. Plasser, H. Pasalic, M. Gerzabek, F. Libisch, R. Reiter, J. Burgdörfer, T. Müller, R. Shepard, H. Lischka: “The multiradical character of one- and two-dimensional graphene nanoribbons”. Angew. Chem., 52, 2581-2584 (2013).
[9] F. Plasser, H. Lischka: “Electronic excitation and structural relaxation of the adenine dinucleotide in gas phase and solution”. Photochem. Photobiol. Sci., 12, 1440-1452 (2013).

— 2012 —

[8] F. Plasser, G. Granucci, J. Pittner, M. Barbatti, M. Persico, H. Lischka: “Surface hopping dynamics using a locally diabatic formalism: Charge transfer in the ethylene dimer cation and excited state dynamics in the 2-pyridone dimer”. J. Chem. Phys., 137, 22A514 (2012).
[7] F. Plasser, A. Aquino, W. Hase, H. Lischka: “UV absorption spectrum of alternating DNA duplexes. Analysis of excitonic and charge transfer interactions”. J. Phys. Chem. A, 116, 11 151-11 160 (2012).
[6] F. Plasser, H. Lischka: “Analysis of excitonic and charge transfer interactions from quantum chemical calculations”. J. Chem. Theory Comput., 8, 2777-2789 (2012).
[5] N. Kungwan, F. Plasser, A. Aquino, M. Barbatti, P. Wolschann, H. Lischka: “The effect of hydrogen bonding on the excited-state proton transfer in 2-(2′-hydroxyphenyl)benzothiazole: A TDDFT molecular dynamics study”. PCCP, 14, 9016-9025 (2012).
[4] F. Plasser, M. Barbatti, A. Aquino, H. Lischka: “Electronically excited states and photodynamics: A continuing challenge”. Theor. Chem. Acc., 131, 1-14 (2012).

— 2011 —

[3] F. Plasser, H. Lischka: “Semiclassical dynamics simulations of charge transport in stacked -systems”. J. Chem. Phys., 134, 034309 (2011).

— 2009 —

[2] A. Aquino, F. Plasser, M. Barbatti, H. Lischka: “Ultrafast excited-state proton transfer processes: Energy surfaces and on-the-fly dynamics simulations”. Croatica Chemica Acta, 82, 105-114 (2009).
[1] F. Plasser, M. Barbatti, A. Aquino, H. Lischka: “Excited-state diproton transfer in bipyridyldiol: The mechanism is sequential, not concerted”. J. Phys. Chem. A, 113, 8490-8499 (2009).